skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Zhu, Li"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The phase transition of cadmium selenide (CdSe) from wurtzite to rocksalt structure has been the subject of extensive research. In this study, we present a novel approach combining machine learning potentials with swarm intelligence-based pathway sampling to elucidate the complex phase transition mechanisms in CdSe. We developed an accurate machine-learning (ML) potential for CdSe, validated against density functional theory calculations, achieving mean absolute errors (MAEs) of 1.8 meV/atom for energies and 33 meV/Å for forces. This potential was integrated with the pathway sampling via swarm intelligence and graph theory (PALLAS) method to explore the potential energy landscape and identify low-energy transition pathways. Our simulations revealed a complex network of transition pathways, and we discovered a multi-step transition mechanism involving an unexpected zinc blende intermediate phase, which appears to play a crucial role in facilitating the transition between wurtzite and rocksalt structures. This finding provides new insights into the structural flexibility of CdSe and offers an explanation for experimentally observed phenomena such as wurtzite/zinc blende coexistence in nanostructures. Our approach not only advances the fundamental understanding of phase transitions in CdSe but also establishes a powerful computational framework for exploring complex materials phenomena, opening new avenues for materials design and discovery in semiconductor systems. 
    more » « less
    Free, publicly-accessible full text available December 26, 2025
  2. Transition-metal and rare-earth borides are of considerable interest due to their electronic, mechanical, and magnetic properties as well as their structural stability under extreme conditions. Here, we report on a series of high-pressure Raman and x-ray diffraction experiments on the cubic rare-earth hexaboride EuB6 to an ultrahigh pressure of 187 GPa in a diamond anvil cell. In EuB6, divalent europium ions occupy the corners of the cubic structure, which encloses a rigid boron-bonded cage. So far, no structural phase transitions have been reported, while the nanoindentation studies indicate amorphization in nanoscale shear bands during plastic deformation. Our x-ray diffraction studies have revealed that the ambient cubic phase of EuB6 shows broadening and splitting of diffraction peaks starting at 72 GPa and the broadening continuing to 187 GPa. The high-pressure phase is recovered on decompression, and the Raman spectroscopy of the recovered sample from 187 GPa shows a downward frequency shift and broadening of T2g, Eg, and A1g modes of boron octahedron. The density functional theory simulations of EuB6 at 100 GPa have identified five possible lowest energy crystal structures. The experimental x-ray diffraction data at high pressures is compared with the theoretical predictions and the role of structural distortions induced by shear stresses is also discussed. 
    more » « less
  3. null (Ed.)